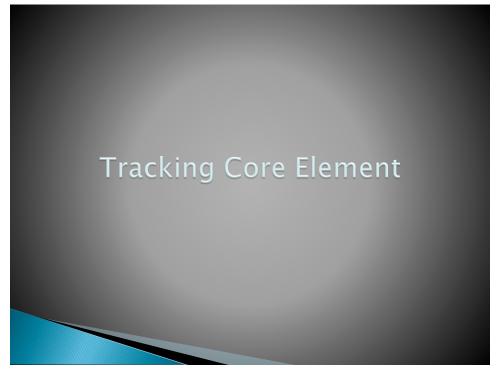


Key Points


- Outline components recommended by CDC for tracking, reporting, and education
- · Provide specific examples of parameters and metrics for tracking
- Review strategies to report antimicrobial stewardship-related activities and outcomes
- Present methods to provide antimicrobial stewardship-related education

The Performance Improvement Cycle Why we track Metrics

3

What Should be Tracked?

Antibiotic Use Measures

- · Antibiotic starts per 1000 resident-days
- · Days of therapy per 1000 resident-days

Process Measures

- · Use of clinical assessment tool
- · Dose, duration, indication documentation
- · Antibiotic selection based on guidelines

Outcome Measures

- · Antimicrobial resistance
- · Antimicrobial-associated adverse events
- · Clostridioides difficile infection rate

https://www.cdc.gov/longtermcare/pdfs/core-elements-antibiotic-stewardship.pd

5

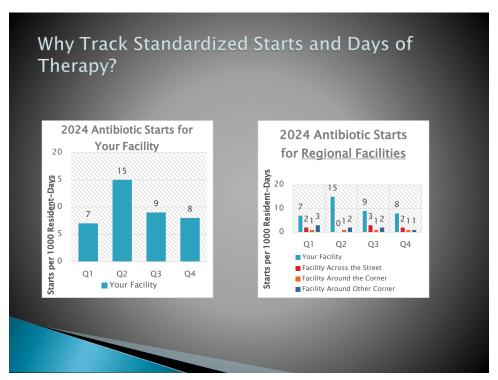
Tracking Antimicrobial Use

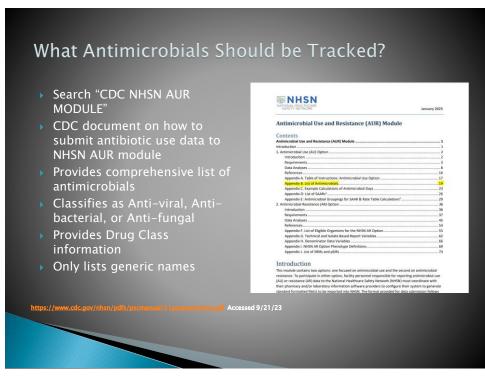
What to Track

How to Organize Data

How to Present

Data


- Number of antimicrobial starts
- Antimicrobial days of therapy
- Overall
- By antibiotic class
- · By indication
- · By prescriber
- By individual agent
- Antibiotic starts per 1000 resident-days
- Days of therapy per 1000 resident-days


Why Per 1000 Resident Days?

- Converts the number of starts, or days of therapy to a rate
- Allows comparison between facilities of differing size
- Recommend to do by month

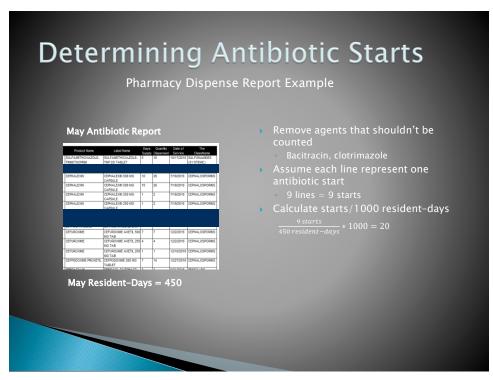
Example:

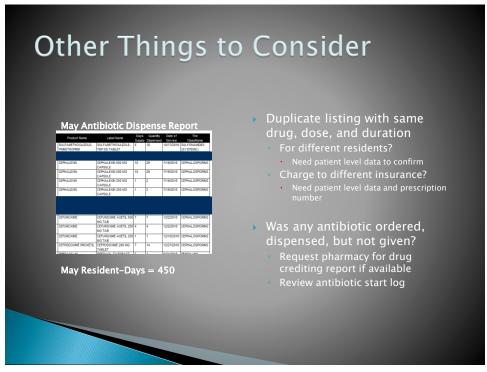
- \rightarrow (# of antibiotic starts in August \div # of resident days August) X 1000
- (# of days of therapy in August ÷ # of resident days August) X 1000

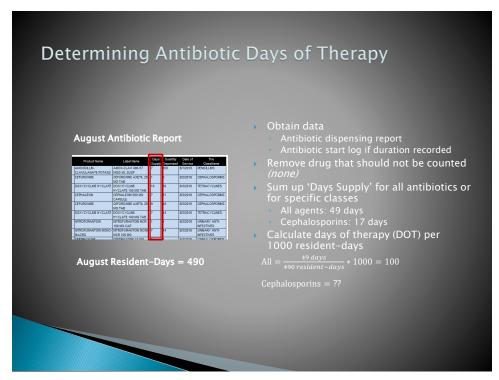
Examples of Antimicrobials for Tracking

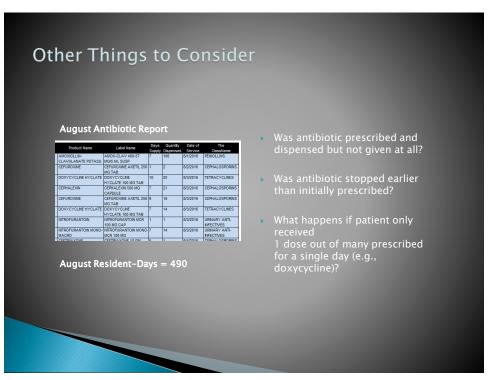
Antimicrobial Agent	Antimicrobial Category	Antimicrobial Class ^a	Antimicrobial Subclass ^a	Antimicrobial Agent	Antimicrobial Category	Antimicrobial Class ^a	Antimicrobial Subclass ^a
AMANTADINE	Anti-influenza	M2 ion channel		CEFPODOXIME	Antibacterial	Cephalosporins	Cephalosporin 3 rd generation
		inhibitors		CEFPROZIL	Antibacterial	Cephalosporins	Cephalosporin 2 nd generation
AMIKACIN	Antibacterial	Aminoglycosides		CEFTAROLINE	Antibacterial	Cephalosporins	Cephalosporins with anti-
AMIKACIN LIPOSOMAL ^b	Antibacterial	Aminoglycosides					MRSA activity
AMOXICILLIN	Antibacterial	Penicillins	Aminopenicillin	CEFTAZIDIME	Antibacterial	Cephalosporins	Cephalosporin 3 rd generation
AMOXICILLIN/	Antibacterial	β-lactam/β-lactamase		CEFTAZIDIME/AVIBACTAM	Antibacterial	β-lactam/β-lactamase inhibitor combination	
CLAVULANATE		inhibitor combination		CEFTOLOZANE/	Antibacterial	β-lactam/β-lactamase	
AMPHOTERICIN B	Antifungal	Polyenes		TAZOBACTAM		inhibitor combination	
AMPHOTERICIN B LIPID	Antifungal	Polyenes		CEFTRIAXONE	Antibacterial	Cephalosporins	Cephalosporin 3 rd generation
COMPLEX				CEFUROXIME	Antibacterial	Cephalosporins	Cephalosporin 2 nd generation
AMPHOTERICIN B	Antifungal	Polyenes		CEPHALEXIN	Antibacterial	Cephalosporins	Cephalosporin 1st generation
LIPOSOMAL				CHLORAMPHENICOL	Antibacterial	Phenicols	
AMPICILLIN	Antibacterial	Penicillins	Aminopenicillin	CIPROFLOXACIN	Antibacterial	Fluoroquinolones	
AMPICILLIN/	Antibacterial	β-lactam/β-lactamase		CLARITHROMYCIN	Antibacterial	Macrolides	
SULBACTAM		inhibitor combination		CLINDAMYCIN	Antibacterial	Lincosamides	
ANIDULAFUNGIN	Antifungal	Echinocandins		COLISTIMETHATE	Antibacterial		
AZITHROMYCIN	Antibacterial	Macrolides				Polymyxins	
AZTREONAM	Antibacterial	Monobactams		COLISTIN	Antibacterial	Polymyxins	
				DALBAVANCIN	Antibacterial	Glycopeptides	Lipoglycopeptides

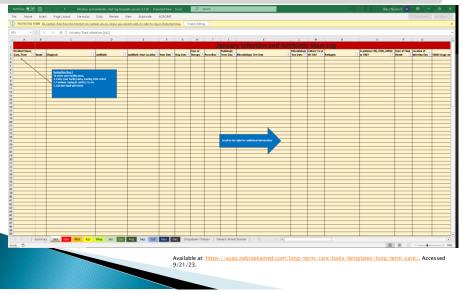
Drugs That Should **NOT** Be Counted

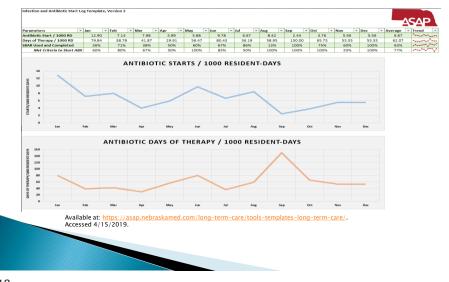

- Antivirals
- Topical antifungals
 - · Nystatin, clotrimazole, ketoconazole
- Topical antibiotics
 - · Triple antibiotic, bacitracin, mupirocin
- Antibiotic-containing eye and ear drops/ointments
 - · Gentamicin, tobramycin, erythromycin
- Agents that work within GI tract or not absorbed
 - Sulfasalazine, rifaximin
 - · Exceptions: vancomycin PO, fidaxomicin
- Urinary tract antiseptic/analgesic
 - · Methenamine, phenazopyridine




Determining Antibiotic Starts


- Obtain data
 - Antibiotic dispense report from pharmacy
 - Quick/Easy to obtain, but may require some fixing (see example)
 - Antibiotic start log
 - More work upfront, but greater control over data





Electronic Infection and Antibiotic Start Log using Microsoft Excel

17

Electronic Infection and Antimicrobial Start Log using Microsoft Excel

Self-Assessment Question #1

A resident was taking azithromycin and amoxicillin for 5 days for community-acquired pneumonia

- 1. What is the total number of antibiotic starts?
- 2. What is the total days of therapy?

Self-Assessment Question #2

A resident started Nitrofurantoin twice a day for 5 days starting the evening of September 30th, and finished the course on the morning of October 5th.

- 1. Does the start count for September, or October?
- 2. What are the total days of therapy for September?
- 3. What are the total days of therapy for October?

Why Track So Many Use Metrics?

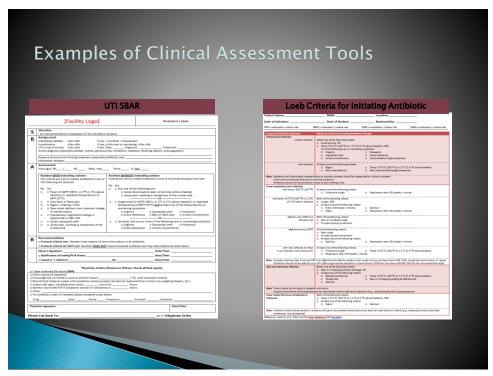
Antibiotic Start

 Assess impact of initiatives that address when antibiotics are not appropriate

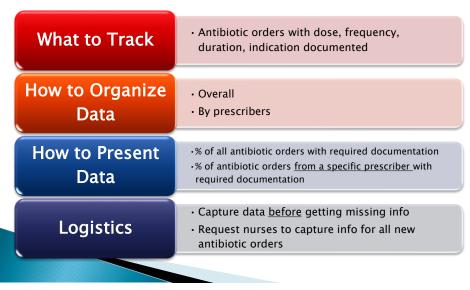
(e.g., asymptomatic bacteriuria)

Days of Therapy

- · Assess impact of interventions that shorten duration of therapy
- · Better metric to monitor overall antibiotic use over time


Standardizing by Patient-Day

- · Account for variations in number of residents and lengths of stay
- · Allow within facility comparison over time
- · Make between facility comparison possible


21

Tracking Process Measures – Compliance with Clinical Assessment

What to Track	How to Organize Data	How to Present Data		
Was assessment tool used? (Y/N)	Overall (200 assessment performed)	% of time assessment tool used for an infection		
Which tool was used? (UTI SBAR, RTI SBAR)	By type of infection (UTI, SSTI)	% of suspected infection met criteria before starting ABX		
Were criteria met? (Y/N)	By unit (2 east, 2 west)			
Who assessed the resident? (Nurse A, Nurse B)	By person assessing resident (Nurse A, Nurse B)			

Tracking Process Measure – Prescribing Documentation

Tracking Process Measure – Antibiotic Selection Based on Guidelines

- Only if facility-specific treatment guidelines are available
 - Based on national guidelines, resistance pattern, prescriber preferences
 - · Work with consultant pharmacists, medical directors to create
- What to track
 - Frequency guideline-recommended antibiotics are selected
 - Frequency the correct dose is selected
 - Frequency correct duration is prescribed
- Capture data monthly or quarterly if antibiotic use is low
- Data can be from
 - Consultant Pharmacist
 - Antibiotic start/infection log
 - Indication MUST be documented for successful tracking

25

Tracking Outcome Measures – Antibiogram

- Antibiotic susceptibility patterns for specific organisms in a period
- ▶ Based on >30 isolates of an organism to increase statistical power
 - But >20 isolates acceptable per AHRQ
 - Can increase isolates by increasing timespan (e.g., to 24 months)
- Should only base information on 1st positive culture from multiple consecutive positives
- If large number of positive cultures, can categorize antibiogram
 - By culture source (e.g., urine cultures)
 - By nursing units

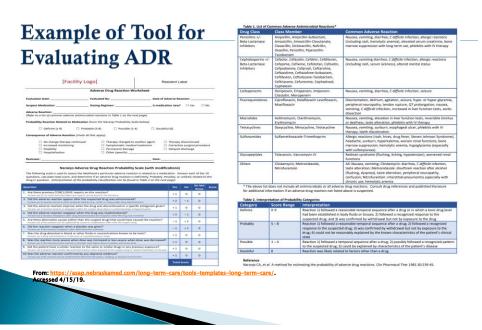
Tracking Outcome Measures -- Antibiogram

- What antibiotic should be selected if suspecting 1st episode of UTI in a resident?
- · Things to consider
 - Does patient have history of UTI where culture data is available?
 - What is the most likely organism in UTI?
 - What is the antibiotic with the highest percent susceptibility?
 - Can antibiotic only be given PO? Is antibiotic readily available in NH?

27

Tracking Outcome Measures – Infection Rates of Specific Organisms

- NHSN tracking
 - MRSA (methicillin-resistant Staphylococcus aureus)
 - VRE (vancomycin-resistant enterococci)
 - \circ ESBL (extend spectrum β -lactamase) Gram negative bacilli
 - CRE (carbapenem-resistant *Enterobacteriaceae*)
 - Clostridioides difficile infections
- Data can be standardized by
 - Resident-Days
 - Number of new admissions
- Why track them?
 - Direct consequences of the extent of antibiotic use AND infection control practices



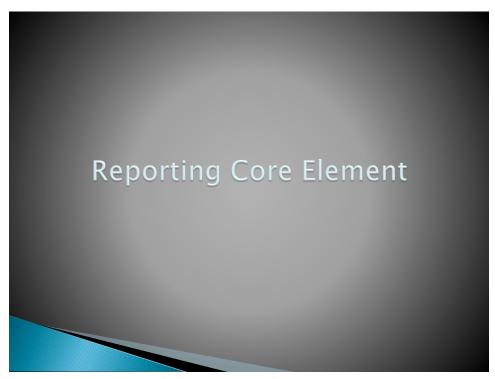
Other Outcome Measures -Adverse Drug Events (ADR)

- Rates of antibiotic-related adverse events
 - C difficile infections
 - Diarrhea, loose stools unrelated to CDI
 - Rash, hives
 - Fluoroquinolones: Tendon rupture, hypo/hyperglycemia, confusion, seizure, neuropathy, others
- Requires careful review of clinical records to determine causality
 - Naranjo adverse drug reaction probability scale¹
 - Classify causal relationship as definite, probable, possible, doubtful
- Request assistance from
 - Consultant pharmacist as part of monthly drug use evaluation
 - Medical director
 - Specific nurse caring for resident who experienced the ADR

Naranjo CA, et al. Clin Pharmacol Ther 1981:30:239-45.

29

Other Antibiotic Use/Outcome Measures NOT Covered

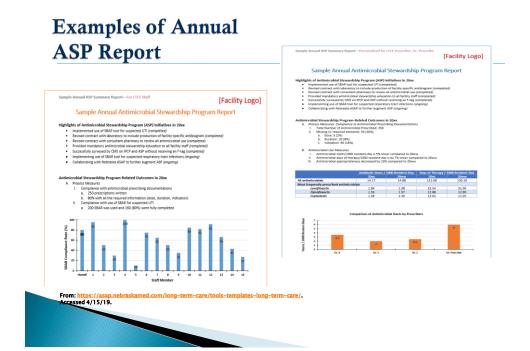

- Defined daily dose (DDD) per 1000 resident-days
 - Requires more calculations
 - DDD definitions may not reflect how antibiotics are usually dosed
- Point prevalence survey
 - % residents receiving antibiotics on a single day
 - Easier to determine but does not inform overall use

- Antibiotic utilization ratio
 - Total monthly DOT/total monthly resident-days
 - Represent average DOT in a single resident-day

Antibiotic-related costs

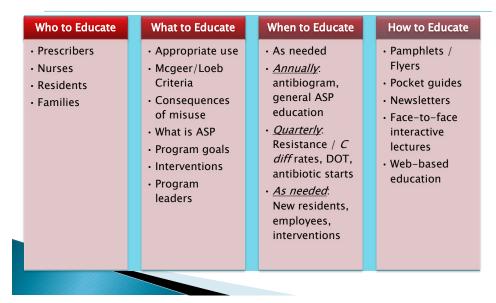
- Important from an administrative perspective
- Costs fluctuate and may not represent overall use

Reporting Antimicrobial Stewardship Data Activities and Outcomes

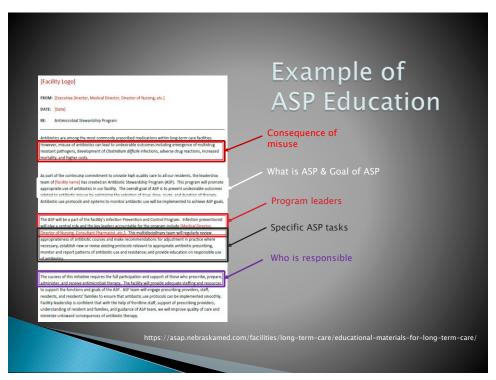

- CDC recommends reporting tracked data to:
 - Clinical providers
 - Nursing staff
- ASAP experience from onsite visits
- Tracked data typically only available to a select few (e.g., QAPI)
- What good is it if no one knows about it!
 - Data can increase buy-in
 - · Resistance rate may deter use
 - Rate of inappropriate UA/culture may improve use of assessment tool
 - Justify your existence in the facility

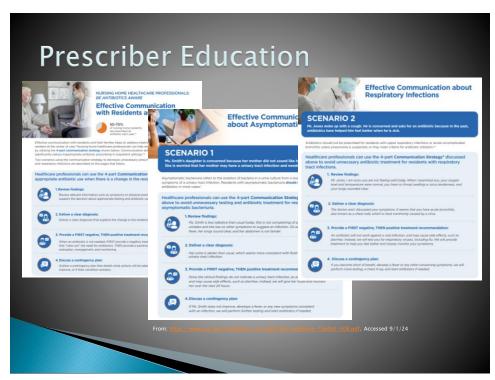


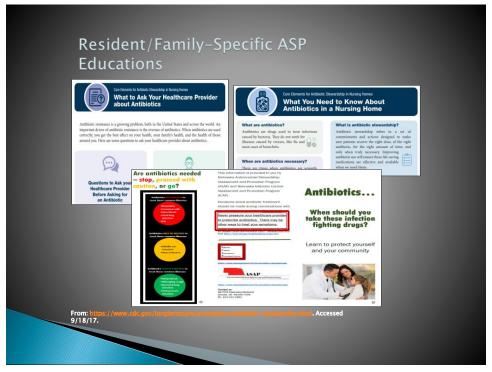
Reporting Antimicrobial Stewardship Activities and Outcomes

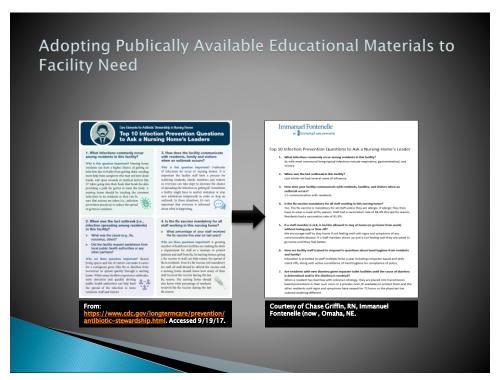

- Who to report to
 - Prescribers
 - Nursing staff
 - Selectively to residents/families
- What to report
 - Antibiotic use data (starts, DOT)
 - Rates of specific infections
 - Compliance to policy (met criteria before starting antibiotics)
 - \$\$ spent on antibiotics

- How to report
 - Use existing system
 - Newsletter, QAPI report
 - Frequency varies based on type and volume of information
 - Annually for antibiogram, antibiotic spending
 - Quarterly, semi-annually, or annually for other info






Antimicrobial Stewardship Education


37

Summary

- Tracking, reporting, and education are important core elements that have direct impact on antimicrobial use
- Tracking includes policy compliance, antibiotic use, antibiotic resistance, and infection rates
- Reporting should inform prescribers, staff, residents of ASP activities and outcomes
- Education should be target audience specific and include goals of ASP, appropriate antibiotic prescribing/use

Free Online Resources

- Nebraska ASAP (<u>asap.nebraskamed.com</u>)
- CDC (cdc.gov/longtermcare/prevention/antibioticstewardship.html)
- AHRQ (<u>ahrq.gov/nhguide/index.html</u>)
- University of Rochester (<u>rochesterpatientsafety.com/</u>)

